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Abstract

A framework for statistical-mechanical analysis of quantum Hamiltonians is
introduced. The approach is based upon a gradient flow equation in the
space of Hamiltonians such that the eigenvectors of the initial Hamiltonian
evolve towards those of the reference Hamiltonian. The nonlinear double-
bracket equation governing the flow is such that the eigenvalues of the initial
Hamiltonian remain unperturbed. The space of Hamiltonians is foliated by
compact invariant subspaces, which permits the construction of statistical
distributions over the Hamiltonians. In two dimensions, an explicit dynamical
model is introduced, wherein the density function on the space of Hamiltonians
approaches an equilibrium state characterized by the canonical ensemble. This
is used to compute quenched and annealed averages of quantum observables.

PACS numbers: 05.30.−d, 02.10.Yn, 75.10.Nr

(Some figures in this article are in colour only in the electronic version)

In the conventional approach to statistical mechanics the Hamiltonian of the system under
consideration is held fixed. If the system is in equilibrium with a heat bath, then uncertainties
in the state of the system arise from ‘thermal noise’ due to random interactions with the
bath. The equilibrium distribution over the state space of the system (configuration space of
a classical spin system, classical phase space or the space of pure quantum states) is then
established. However, in some cases—as in amorphous alloys—the Hamiltonian need not be
fixed, and may even fluctuate owing to thermal or other intrinsic sources. Observable effects
arising from such Hamiltonians may even be significant in the quantum domain.

The purpose of the present communication is to introduce a theoretical framework for
an equilibrium theory of Hamiltonians. The fact that parameters or matrix elements of the
Hamiltonian themselves are subject to random fluctuations for some systems has long been
recognized in the literature of spin glass [1] or random matrix theory [2]. The novel idea
introduced here, as distinguished from that considered in the theory of spin glass or random
matrices, is the construction of equilibrium distributions over invariant subspaces of the space
of quantum Hamiltonians by using a gradient flow equation on the space of Hermitian matrices.

In classical statistical mechanics the notion of a gradient flow plays an important role in
describing the approach to equilibrium: a system immersed in a heat bath naturally tends to
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release its energy into the environment and thus approach its minimum energy state, and this
tendency is characterized by a Hamiltonian gradient flow. An equilibrium state is attained
when this flow is on the average counterbalanced by thermal noise, where the magnitude of the
noise is determined by the temperature of the bath. Accordingly, we shall introduce a gradient
flow equation on the space of Hamiltonians such that the eigenstates of an arbitrary initial
Hamiltonian H0 at time t = 0 tend towards alignment with those of a reference Hamiltonian,
denoted by G. Thus, G plays the role of the ‘fixed’ Hamiltonian in conventional quantum
statistical mechanics. The eigenstates of Ht thus evolve towards those of G under the flow.
By introducing of a suitable noise term, we then characterize the approach to an equilibrium
distribution.

This communication is organized as follows. The key results concerning the properties
of the double-bracket equation that generates the gradient flow are summarized first in the
proposition. The notion of a double-bracket flow was first introduced by Landau and Lifshitz
in the context of characterizing dispersions in magnetism [3]. In its ‘modern form’ it
was introduced by Brockett [4] and has been successfully applied to many areas, such as
optimal control, linear programming, sorting algorithms and dissipative systems. Although
some assertions of the proposition are valid in all dimensions, we shall analyse only the
two-dimensional case in full detail. We subsequently construct an explicit model for the
‘equilibrization’ of 2 × 2 quantum Hamiltonians, such that the stationary state is given by
the canonical distribution. The resulting statistical theory of quantum Hamiltonians can be
extended to a modification of quantum statistical mechanics. In particular, we work out the
quenched and annealed averages of quantum observables. We conclude by indicating how the
analysis can be extended to higher dimensions.

Proposition. Let Ht and G be arbitrary 2×2 Hermitian matrices, where Ht is time dependent
and G is fixed. Let Ht satisfy the double-bracket evolution equation

dHt

dt
= −λ [Ht, [Ht,G]] (λ ∈ R+), (1)

with initial condition H0. Then the evolution (1) is isospectral, i.e. the eigenvalues of H0

are preserved under (1), and limt→∞[Ht,G] = 0. Furthermore, the space of Hermitian
Hamiltonians is foliated by a family of invariant 2-spheres L, and (1) induces a gradient flow
on each L.

We remark that in terms of the Hermitian operator X = i[H,G] the double-bracket
evolution (1) can be rewritten as dH = iλ[H,X] dt , which formally is just the Heisenberg
equation of motion. However, owing to the H-dependence of X the evolution is nonunitary.
We also note that in units h̄ = 1 the parameter λ has dimension [Energy]−1. The Hamiltonians
H0 and G are both assumed nondegenerate; otherwise, if at least one of the Hamiltonians is
degenerate, then H0 is a fixed point of the flow. We now proceed to establish the proposition.

The fact that equation (1) asymptotically drives Ht towards [Ht,G] = 0, irrespective of
the dimensionality of the matrices, follows from the relation:

d

dt
tr(Ht − G)2 = −2λtr([G,Ht ]

†[G,Ht ]) � 0, (2)

where the equality is attained if and only if [Ht,G] = 0. To see that (1) defines an isospectral
flow (which is also valid irrespective of the dimensionality of the matrices) we note that the
right-hand side of (1) can be written in the form λd(e−isXHt eisX)/ds|s=0. The isospectral
property then follows from the relation det(e−isXHt eisX − E11) = det(Ht − E11). To prove
that the orbit of the flow for a given initial value H0 lies on a 2-sphere L (which is isomorphic
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to the space of pure states for a two-level system), and that (1) defines a gradient flow on L,
we shall solve (1) explicitly for the case of 2 × 2 Hermitian matrices.

Let the 2 × 2 Hamiltonian Ht be represented in terms of the Pauli matrices as

Ht = 1
2ut11 + 1

2νσ · nt , (3)

where nt = (xt , yt , zt ). Similarly for the reference Hamiltonian G we write

G = 1
2v11 + 1

2μσ · g (4)

for a unit vector g. Bearing in mind the relations

u̇ ∝ tr[Ht,X] = 0 and [Ht,G] = 1
2 iνμσ · (nt × g) (5)

we find that (1) reduces to

dnt

dt
= ωnt × (nt × g), (6)

where ω = λνμ. From

d(nt · nt )

dt
∝ nt · (nt × (nt × g)) = 0 (7)

we see that the norm of nt remains constant under (6). Without loss of generality we work
with the basis in which G is diagonal, and choose g = (0, 0, 1). In terms of the usual spherical
parametrization in the G-basis we have nt = (sin θt cos φt , sin θt sin φt , cos θt ). Therefore, (6)
reduces to

θ̇t = ω sin θt and φ̇t = 0. (8)

Solving these, we obtain

cos θt = tanh(c0 − ωt) and φt = φ0, (9)

where c0 = tanh−1(cos θ0) and φ0 are initial values. The solution Ht to (1) is thus

Ht = 1

2

(
u0 − ν tanh(ωt − c0) ν sech(ωt − c0) e−iφ0

ν sech(ωt − c0) eiφ0 u0 + ν tanh(ωt − c0)

)
. (10)

A straightforward calculation shows that the eigenvalues of Ht are time independent, and that

lim
t→∞ Ht = 1

2

(
u0 − ν 0

0 u0 + ν

)
. (11)

Thus, the Hamiltonian is asymptotically diagonalized in the G-basis. Observe that trHt and
detHt are conserved quantities. Therefore, the flow induced by (6) for fixed initial values
u0 and |n0| is confined to a 2-sphere L, which can be identified with the state space of a
two-level system (i.e. the complex projective line). Since ut and |nt | are constant, in what
follows we shall fix these two variables and focus our attention upon the associated sphere L
parameterized by the dynamical coordinates (θt , φt ).

The fact that (6) defines a gradient flow

dxa = − 1
2λνgab∇bG(x) dt (12)

on L, where we use local coordinates (x1, x2) = (θ, φ) on the sphere, can be seen as follows.
First, in terms of these coordinates the inverse metric on the sphere is

gab = 4

sin2 θ

(
sin2 θ 0

0 1

)
. (13)

We define a function G(x) on the sphere L as follows:

G(θ, φ) = 1
2 (v + μ cos θ). (14)
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Figure 1. Flow on the sphere L. The vector field generated by the unitarily-modified gradient flow
(15) is plotted. The first term in (15) generates a rotation around the G-axis, while the second term
generates geodesic flows towards the south pole. The axis n0 of the initial Hamiltonian H0 spirals
around the G-axis g and is asymptotically aligned with the latter.

This is obtained by taking the ‘expectation’ of reference Hamiltonian G in a pure state
corresponding to the point (θ, φ) on L. Then, a short calculation using (12), (13) and (14)
shows that the dynamical equations (8) correspond to the gradient flow (12).

We remark, incidentally, that the dynamical equation (1) can be modified to include a
unitary term

dHt

dt
= −i[Ht,G] − λ [Ht, [Ht,G]] , (15)

without greatly affecting its physical characteristics. In the 2 × 2 example considered here,
the only change occurs in the phase, so that instead of φt = φ0 we have φt = φ0 + μt .
Thus, according to (1) the eigenvectors of Ht evolve ‘straight’ towards those of G (i.e., along
geodesics), whereas under (15) they ‘spiral’ towards those of G. This is illustrated in figure 1
where we plot the vector field on the sphere defined by the dynamical equation (15).

We also note that the diagonalization property of the double-bracket evolution (1) has
been applied to the analysis of Toda lattices [5], dispersions in the Euler–Poincaré equations
[6], couplings in photorefractive media [7], and flow equations in renormalization group [8].
Although here we consider the case in which G is fixed, it is possible to vary G in time (that is,
vary the direction of g). Then the dynamical equation (1) can be used to characterize quantum
control (cf [9] for a related idea). In this context it would be interesting to investigate the role
of geometric phases for observables, when the control Hamiltonian G is varied along a loop
in L.

Having defined a natural gradient flow on the invariant 2-spheres foliating the space of
Hamiltonians, we now consider a dynamical model on a given sphere L such that an arbitrary
initial Hamiltonian H0 evolves—according to (1)—towards the reference frame determined
by G, but at the same time is randomly perturbed in all directions in L by a pair of independent
Brownsian motions. The dynamical model, in particular, will possess the following properties:
(i) the eigenvalues of Ht remain constant in time, and (ii) the probability distribution over L
evolves towards an equilibrium distribution characterized by the standard canonical density
function. Although rather elaborate, this model can be treated analytically by identifying any
given surface of the foliation with the space of pure states of a two-level system, which permits
application of the model for the thermalization of quantum states introduced in [10].
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We consider first a stochastic differential equation of the form

dxa = μa dt + κσ a
i dWi

t (16)

on L (viewed as a real 2-sphere). Here κ is a constant, the drift μa is a vector field on L,
and the vectors

{
σa

i

}
i=1,2 constitute an orthonormal basis in the tangent space of L such that

gab = σa
i σ b

j δij and σa
i σ b

j gab = δij . We note that dxa is the covariant Ito differential [11],

and that the standard two-dimensional Wiener process
{
Wi

t

}
satisfies dWi

t dW
j
t = δij dt . By

straightforward calculation one verifies [10] that the density function ρt (x) on L associated
with the stochastic evolution (16) satisfies the Fokker–Planck equation

∂

∂t
ρt (x) = −∇a(μ

aρt ) +
1

2
κ2∇2ρt . (17)

For our model we require that the drift vector μa represents the double-bracket gradient flow
(1). This is achieved by choosing μa = − 1

2κ2λ∇aG, where κ2 = ν. Then it follows from
a theorem of Zeeman [12] that there exists a unique stationary solution to (17), given by the
canonical density

ρ(x) = exp(−λG(x))∫
P exp(−λG(x)) dV

. (18)

To illustrate these results in more explicit terms we consider a system consisting of a single
spin- 1

2 particle immersed in an external magnetic field. The Hamiltonian is then H = −B · S,
where B denotes the field and S the spin vector. The direction of the field B, however, is
subject to fluctuations around its stable direction, specified by G (directed along the z-axis).
Calculating the orthonormal basis σa

i on the sphere, we obtain the stochastic equations for the
variables (θ, φ):⎧⎨

⎩
dθt = ω sin θt dt +

√
2ν

(
dW 1

t + dW 2
t

)
dφt = − 1

sin θt

√
2ν

(
dW 1

t − dW 2
t

)
.

(19)

The associated Fokker–Planck equation reads

ρ̇ = −ω(cos θ + sin θ∂θ )ρ + 2ν

(
∂2
θ +

1

sin2 θ
∂2
φ

)
ρ, (20)

where ∂θ = ∂/∂θ and ∂φ = ∂/∂φ. The asymptotic solution is the following canonical density
function:

ρ(θ, φ) = λμ

2π sinh
(

1
2λμ

) exp

(
−1

2
λμ cos θ

)
. (21)

Direct substitution shows that (21) is the stationary solution to (20). It follows from (21)
and the use of the spherical (Fubini-Study) volume element dV = 1

4 sin θ dθ dφ that the
equilibrium mean Hamiltonian is

〈H 〉 = 1

2

(
u0 + ν〈cos θ〉λ 0

0 u0 − ν〈cos θ〉λ,

)
, (22)

where 〈cos θ〉λ = 2/λμ − 1/ tanh
(

1
2λμ

)
. We may regard the parameter λ as representing the

‘inverse temperature’ for the Hamiltonian: if the noise level is high (λ 
 1), then the direction
of the external field B on the average lies close to the xy-plane so that 〈cos θ〉λ � 0, whereas
if the noise level is low λ � 1, then the field B on the average is parallel to the z-axis and we
have 〈cos θ〉λ � −1.
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Figure 2. Quenched and annealed averages of G. The functions 〈G〉Q and 〈G〉A are plotted against
the temperature T = β−1, where we set λ−1 = 0.1, v = 0, ν = 1 and μ = 2 so that G = σz.
The ‘quenched magnetization’ 〈σz〉Q does not attain the maximum value 1.0 at zero temperature
unless λ−1 = 0.

Let us now consider how the statistical theory of Hamiltonians presented here can be
applied to quantum statistical mechanics. In this context it is natural to borrow ideas from the
spin glass literature [1]. We may take the averaged Hamiltonian 〈H 〉λ as the starting point of
the analysis—this gives the analogue of an annealed average. In this regime the expectation
of an observable O is given by

〈O〉A = tr(O e−β〈H 〉λ )
tr(e−β〈H 〉λ )

. (23)

Such an expectation, however, will involve the use of the averaged Hamiltonian 〈H 〉λ whose
eigenvalues differ from those of H. Alternatively, we may use the ‘unaveraged’ Hamiltonian
to compute the thermal expectation of an observable O, regarded as a function on a specified
invariant surface in the above described foliation of the space of Hamiltonians, and then take
its average—this gives the analogue of a quenched average:

〈O〉Q =
〈

tr(O e−βH )

tr(e−βH )

〉
λ

. (24)

A short calculation shows that the canonical quenched average of the Hamiltonian G is

〈G〉Q = 1

2
μtanh

(
1

2
βν

) (
1

tanh
(

1
2λμ

) − 2

λμ

)
, (25)

whereas the canonical annealed average of G is

〈G〉A = 1

2
μtanh

[
1

2
βν

(
1

tanh
(

1
2λμ

) − 2

λμ

)]
. (26)

These averages are plotted in figure 2. These results suggest a new line of studies on the
extended quantum statistical mechanics of disordered systems.

The explicit analysis presented above is for the most part confined to 2 × 2 systems.
In higher dimensions, the double-bracket evolution equation (1) still defines an isospectral
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gradient flow in the space of Hamiltonians. Thus, the procedure for a statistical analysis
of Hamiltonians as outlined above is naturally extendable to higher dimensions. However,
in higher dimensions the equivalence of the Schrödinger and Heisenberg picture for the
nonunitary motion (1) breaks down (that is to say, the generic surface foliating the space of
Hamiltonians is not isomorphic to the associated space of pure states). Instead, in higher
dimensions, the relevant foliation consists of certain subspaces of higher-dimensional spheres.
Nevertheless, there exist unitary-invariant measures on these spaces, which can be used to
formulate the theory in an analogous manner. In particular, the equilibrium state resulting
from the thermalization dynamics remains canonical in the sense that it is proportional to
the canonical density exp(−λtr(GH)) just as in the 2 × 2 example (cf [13]). The remaining
open problem is the precise geometrical description of the relevant gradient flows in higher
dimensions, and the specification of the associated measures to calculate partition functions.
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